

Towards Traffic Benchmarks for Empirical Networking Research:
The Role of Connection Structure in Traffic Workload Modeling

Jay Aikat+, Shaddi Hasan*, Kevin Jeffay+, F. Donelson Smith+

University of North Carolina at Chapel Hill
Chapel Hill, NC, USA

+{aikat, jeffay, smithfd}@cs.unc.edu ; *shaddi@berkeley.edu

Abstract – Networking research would be well served by
the adoption of a set of traffic benchmarks to model
network applications for empirical evaluations; such
benchmarks are common in many other areas of
computing. While it has long been known that certain
aspects of modeling traffic, such as round trip time, can
dramatically affect application and network performance,
there is still no agreement as to how such components
should be controlled within an experiment.
 In this paper we advance the discussion of standards
for empirical networking research by demonstrating how
certain components of network traffic, such as the structure
of application data exchanges within a TCP connection, can
have a larger impact on the results obtained through
experimentation than other dimensions of traffic such as
round-trip time. Such findings point to the pressing need
for traffic benchmarks in networking research.
 Through testbed experiments performed with
synthetically generated network traffic from two very
different traffic sources, and using several models of TCP
connection structure, we demonstrate the strong effects of
connection structure in traffic workload modeling on
performance measures such as queue length at routers,
number of active connections in the network, user response
times, and connection durations.

KEYWORDS
Measurement, Workload modeling, Traffic generation,
Experimental evaluations, Performance evaluations.

1. INTRODUCTION AND MOTIVATION
 In their seminal paper, Floyd and Paxson [6]
articulated the challenges to performing realistic and
meaningful experiments. The research community
responded and over time, ever more sophisticated means of
performing evaluations of proposed network improvements
using simulation, emulation, and live experimentation have
been developed. Software simulators (e.g., ns-2, ns-3, and
GTNets), laboratory testbeds (e.g., Emulab), and wide-area
network testbeds, e.g. GENI (Global Environment for
Network Innovation) have evolved to provide capabilities
to more faithfully reproduce protocol and network
dynamics that occur on production networks.
 Synthetic traffic is vital to performing reproducible,
controlled experiments. Traffic generation itself contains

several important components. It is widely accepted that
emulating round trip time (RTT) is a key factor in faithfully
representing traffic conditions on production networks.
However, there is little attention given to emulating the
application-level data exchanges, we call connection
structure, within the TCP connections which dominate
Internet traffic. State of the art traffic generation tools,
such as Harpoon [14], Tmix [8], and Swing [16], all
provide a means of turning measurements of production
network links into “realistic” synthetic traffic. The traffic is
realistic because it directly reproduces measurements of
real traffic such as total number of flows present, total
number of bytes transmitted, and emulates some model of
measured RTT. However, even as these tools exist, the
adoption of such realistic traffic emulation has been slow.
 Leading network performance evaluation studies
reveal that there is no accepted best practice for connection
structure emulation in network experiments. Previous
studies [8] have shown that using per-connection RTTs for
traffic generation faithfully represents the realistic
conditions captured on the production network. But how
does connection structure used to generate traffic in an
experiment affect the outcome of that experiment?

In this paper we make the case that structure of the
synthetic traffic used in experimentation matters. By
“structure” we mean the extent to which, for example, a
synthetic TCP connection mirrors the pattern of
application-level data exchanges of a TCP connection on
some production network. While on its face, this can hardly
be a surprising result (after all, how could traffic structure
not matter?!), what we believe will be surprising for most
readers is the extent to which modeling such structure does
matter for performance studies.

Here we provide empirical data that structure matters
even more than RTT. Specifically we show that for several
important performance metrics, the structural properties of
the TCP connections in traffic generation have a larger
impact on performance than do RTTs. These data suggest
that if one wants to perform experiments from which
conclusions can be drawn that can be applied on real
networks, the structure of the traffic used in experiments
are at least as important, if not more important, than RTT.
We focus on a comparison against the effects of RTT on
performance simply because we feel that among the many
measures of traffic that affect performance, RTT is likely
the most understood and appreciated parameter.

2012 IEEE 20th International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems

1526-7539 2012

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/MASCOTS.2012.19

78

 In this paper, we present the results of extensive
experiments comparing the effects of several synthetic
traffic generation paradigms on familiar measures of
network performance. We compare different connection
structures to generate the same traffic input from two
different sources, and compare the results for four
performance metrics: queue length at routers, number of
active connections in the network, user response times, and
connection durations. These performance metrics are not
specific to our experiments. They represent application
performance at the ends, through measuring connection
duration and response times, and network performance
through measuring the queuing dynamics for a FIFO (first-
in-first-out) queue and the number of active connections in
the network.

 Our results show the following. First, we confirm that
RTT matters. For any given paradigm of synthetic traffic
generation, and for any of our performance measures,
different results are obtained when one varies the manner in
which RTTs are assigned to connections. However, for a
given RTT assignment scheme, the variation in
performance seen by varying the connection structure
exceeds that observed when varying RTTs. This
demonstrates that all things being equal, connection
structure can have an effect on measures of network
performance at least as great as, and usually greater than
RTT. Specifically, adding endpoint latencies (think times)
to the connection structure significantly shifts the results
for any experiment. Therefore, unless one pays attention to
connection structure, it will be difficult to reach
fundamental conclusions about the results of experiments.

2. TRAFFIC GENERATION

 In this section we define the key workload and network
characteristics that are varied in our experiments. These
include the connection structure of a TCP connection, the
RTT, and the receiver maximum window size.

2.1 Connection Structure
 We represent the structure in modeling application data
exchanges by the connection structure for the underlying
TCP connection. This is modeled in two dimensions – size
and time. The size dimension defines the counts of bytes
transferred by the connection in both directions. The time
dimension models the internal dynamics of a connection
consisting of any synchronization and latencies introduced
by exchanges of application-level protocol data units,
typically in a request-response pattern as in a client-service
model of communication. The time dimension includes all
the “endpoint latencies” related to synchronization between
requests and responses, the elapsed time between a request
and its response (“server” latency) or between subsequent
requests (“client” latency).
 We represent connection structures in this study by
starting with a simple model, based on Harpoon [14] for
structures defined only in the size dimension. Consider an

exchange between two TCP endpoints that transfers a total
of X bytes in one direction and Y bytes in the opposite
direction over the duration of the connection. Harpoon
would use two separate connections for each original
connection with a unidirectional transfer in each connection
of all the bytes in a given direction in a single block. We
modified this concept to use a single TCP connection for
each original connection, but with two different methods of
synchronizing the bidirectional data transfers. In both
methods, all the bytes flowing in one direction are sent as
one large block without internal gaps or latencies. In one
method, the two blocks are sent concurrently in both
directions while in the other method the two blocks are sent
sequentially as a single request-response exchange. We call
the first method the block-concurrent (blk-conc) model and
the second method the block-sequential (blk-seq) model.
 The two ways of representing connection structure
described so far are based solely on the size component of
connections. To introduce the time dimension, we turn to
the representations exemplified by the Swing and Tmix
traffic generators. Because we have chosen to use the Tmix
traffic generation system in our research, we will adopt
their terminology to explain the connection structures with
both size and time dimensions. In Tmix each connection
found in a trace of TCP/IP headers from a production
network link is analyzed to produce a “connection vector”
representation. The connection vector includes the
connection’s start time relative to the beginning of the trace
and a descriptor of each request-response exchange found
by the analysis tool. A request-response exchange (called
an “epoch”) is described by a 4-tuple consisting of the
request size (called the a unit size), the response size
(called the b unit size) and two latency values (called the t
values) for the time between a request and its response and
the time between successive epochs. Unidirectional
transfers have only an a or b value depending on the
direction of transfer. A high level summary of the Tmix
analysis and generation framework is given in Figure 1.

Figure 1: Traffic Generation

 Using this framework, we can describe several
variations for representing connection structures. First, we
could retain the set of epochs representing the request-
response exchanges along with the a and b values for each
epoch but without any of the t values. This representation
that we call the “ab model” includes the time dimension

79

only for the implied synchronization between a request and
its response. The full representation (the “a-t-b-t model”)
adds the latency between a request and its response (server
processing time) and between successive requests (client
processing and user “think” times), if they exist in the
original traffic.
 The Tmix traffic generation system allows us to easily
construct all the above described connection structures to
represent the same set of TCP connections found in a link
trace. This is done by using the Tmix analysis tools to
generate the connection vectors containing the full
representation (a-t-b-t) and then applying processing scripts
to generate new connection vectors representing different
structures but retaining the desired properties from the
original TCP connection.
 Thus, we have four distinctive cases (blk-conc, blk-seq,
ab, and a-t-b-t). The blk-conc structure includes the total
number of bytes transferred in each direction but none of
the time dimensions for request-response synchronization
or latencies within or between exchanges. The blk-seq
structure is similar but models a minimal structure by
sending the bytes in the two directions sequentially, like
one request-response exchange. The ab structure explicitly
represents the bytes transferred for each request-response
exchange (epoch) along with the inherent synchronization
between requests and responses, but no latencies within or
between exchanges. The a-t-b-t structure is a full
representation of all sizes, synchronization, and timings in
the connections.

2.2 Round Trip Time Emulation
 We experimented with seven different methods of
emulating RTTs in our experiments. All of these have been
used in previously published work. For one extreme we
first tried emulating no RTT latency beyond that inherent in
the laboratory network used in the experiments which is
typically 1 millisecond or less (reasonable for studying
local networks but obviously wrong for wide-area
emulation). At the other extreme, we used the Tmix
capability to emulate the specific minimum RTT found for
each connection by analyzing the TCP/IP header traces.
 We also experimented with emulating a single value
for all connections, either the mean or median of the RTTs
found by analyzing the TCP/IP header traces. Another form
of RTT emulation was done by assigning a small set of
values to the paths between pairs of traffic generator
machines in the lab network. The network described in
section 5 has a maximum of 30 paths between pairs of
generator machines. In one case, we assigned a unique
emulated RTT to the path between sets of three pairs (a
total of 10 path RTTs). The values chosen for this case
were the values recommended for the TMRG common TCP
evaluation suite [2]. In a second variation, we assigned a
unique RTT value for each of the 30 paths between pairs of
generator machines. In this case, we used a discrete
approximation to the RTT distribution [1] found from
analysis of the traces (see Figure 3).

 While we ran experiments with the full cross product
of connection structures and RTT emulations, we report
results here only for the most distinctive cases of RTT
emulation: mean RTT for the traffic data emulated for
every connection (labeled “meanRTT”), 10 path RTT
values (“10pathRTT”) and the emulation of the specific
minimum RTT found for each connection by analyzing the
TCP/IP header traces (called “usernet” after the name of
the Tmix component that emulates per-connection RTTs).

2.3 Receiver window sizes
 For all the experiments discussed in this paper, we
assigned each side of every connection the maximum
receiver window size exactly as was determined from
analysis of the original trace. We also ran experiments
where the maximum receiver window sizes were fixed for
all connections as 8KB, 16KB, or 64KB. Results for the
latter set are not reported here.
It is important to emphasize that all the results presented
here are based on the same raw measurements (two packet
header traces). The only differences are in the choices of
how we modeled the application data exchanges in the
traffic and how we emulated RTT for traffic generation.

3. TRAFFIC CHARACTERISTICS
 We use two very different network traces collected at
two diverse locations on the Internet in all our experiments.
Both traces are one hour long. The first one, we refer to as
“UNC” was taken on the campus border link of a large US
university campus, connecting the campus to the Internet.
The second trace was taken at an aggregation switch for
four internal networks at one of IBM Corporation’s large
development sites. The trace includes all traffic between
these networks and an external Internet service provider.

 0

 100

 200

 300

 400

 500

 600

 10 15 20 25 30 35 40 45 50

Li
nk

 th
ro

ug
hp

ut
 in

 M
bp

s

Time in minutes

Univ.
IBM

Figure 2: Link throughput / offered load

 The campus trace was captured on Jan 10, 2008 from 2
to 3 PM on a weekday, which represents a very busy
typical day at the university. The IBM trace was captured
on Oct 10, 2006, for an hour, starting at 2:20 PM, which is
also representative of typical peak workday traffic on this
corporate network. We chose these two traces to
demonstrate our results because of their diverse
characteristics. The UNC trace has about 4.7 million

80

connections with an offered load of 471 Mbps in one
direction and 202 Mbps in the other. The IBM trace has
about 2.8 million connections with an offered load of 404
Mbps in one direction and 366 Mbps in the other. Figure 2
shows the link throughput for both traces in the high
throughput direction only.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

RTT (ms) / Number of Epochs

Univ-RTT
IBM-RTT

Univ-epochs
IBM-epochs

Figure 3: RTT and epochs - CDF

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000

C
om

pl
em

en
ta

ry
 C

um
ul

at
iv

e
P

ro
ba

bi
lit

y
(%

)

RTT (ms) / Number of Epochs

Univ-RTT
IBM-RTT

Univ-epochs
IBM-epochs

Figure 4: RTT and epochs - CCDF

 The mean RTT for connections in the UNC trace was 80
ms while in the IBM trace, it was 92 ms. On average, the
connections in the UNC trace used 4 epochs to transfer
bytes with a standard deviation of 22. The IBM trace had a
mean of 9 epochs with a standard deviation of 123.

Traffic
source

Median/Mean server
processing times

Median/Mean user
think times

UNC 47 ms / 3.1 s 173 ms / 5.6 s
IBM 53 ms / 4.7 s 55 ms / 5.9 s

Table 1: Server Processing and User Think Times

 The cumulative distribution of round trip times and
number of epochs for both traces are shown in Figure 3,
with their complementary cumulative distributions shown
in Figure 4. The connection sizes in total bytes transferred
differed significantly between the two traces as well. The
UNC connections transmitted roughly 50KB on average
while the mean for IBM connections was 129KB. The
standard deviation for the bytes transferred was 1.3MB and
5.5MB respectively.

As shown in Table 1, there was also a significant
difference in the measured server processing times and user
think times between the two traces. This latency contributes
directly to response times for request-response exchanges,
as well as connection durations. The connection durations
in turn affect the number of active connections seen in the
network at any given moment.

4. EXPERIMENTAL METHODOLOGY
We conducted experiments using a laboratory network

configured to emulate the real-world environments where
the traces we use in the evaluations were captured – at a
link connecting a large university or enterprise campus to
its Internet service provider. The laboratory network used
to emulate this environment is shown in Figure 5. At each
edge of the network are 30 workload generator systems
which are Intel-architecture machines with speeds ranging
from 0.5 to 3.0 GHz running FreeBSD 6.0. The 30
machines on the left side in the figure handle generation
tasks to emulate the workload generated by application
processes on the university or enterprise campus while the
30 machines on the right side emulate the workloads from
application processes located anywhere in the Internet.

We used the Tmix traffic generation system (that can be
obtained from the contact given in [15]) on all 60 machines
to create workloads based on different connection
structures, and to emulate per-connection RTTs with
different methods (described in section 3).

Figure 5: Experimental Network Setup

 The core of this network consists of two Ethernet
switches that aggregate the packet traffic from the
generator machines on each edge. The two switches each
have a fiber uplink to a 10 Gbps NIC in a 3.6 GHz machine
that runs FreeBSD 6.0 and acts as a software router
between the two sides of the network. The two router
machines are connected by a 1 Gbps link. For calibrations
and for experiments with an uncongested network
(“unconstrained mode”) the 1 Gbps link is used directly
since its capacity is significantly greater than the load
generated from either trace. For experiments with a link
operating under a load that is near saturation (95% of link
capacity), the dummynet bandwidth emulation function
was used to constrain the link bandwidth (“constrained
mode”) to the target capacity of the router-to-router link set
to 496Mbps for the university trace, and 424Mbps for the
IBM trace. In all cases the router queues were set to a very
large size (> 10,000 packets) which was determined to be

81

sufficient to avoid any packet drops at the queue loss rates
were not a factor in any of the results, even in constrained
mode. Measures of unbounded queue lengths have proven
useful in the past for assessing issues of router buffer sizing
and for understanding packet arrival processes. The Tmix
capability to emulate RTTs on a per-connection basis
(“usernet”) means that the simple dumbbell topology of the
lab network can have a similar effect on the dynamic time-
dependent behavior of TCP connections as would be
encountered in a real wide-area network.
 To monitor traffic in the lab network, we used two
monitoring machines with passive optical taps. One was
placed on the 10 Gbps uplink between the switch and the
router machine on the left side of the network. This monitor
used an Intel 10 Gbps NIC with a locally modified version
of tcpdump that counted packets and bytes sent from the
switch to the router in one millisecond intervals. The
second monitor was placed on the 1 Gbps link between the
routers. Two Intel 1 Gbps NICs (one for each direction) are
used to count packets and bytes in 1 millisecond intervals
and to take a tcpdump of only SYN, FIN, or RST packets
(to count active connections). A monitoring program run
on the routers creates a log of the queue size (number of
packets in the queue) sampled every 10 milliseconds. The
traffic generator programs measured and recorded all the
metrics related to application or user perceived
performance at the end systems (connection durations,
response times, etc.)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

blk-conc.meanrtt
blk-conc.10pathrtt

blk-conc.usernet
a-t-b-t.meanrtt

a-t-b-t.10pathrtt
a-t-b-t.usernet

Figure 6a: Connection Duration – UNC

Although the results for only a subset of experiments are
presented in the next few sections, we ran a large number
of additional experiments. First, we calibrated the network.
There are some critical elements of our experimental
procedures that had to be validated before performing
experiments. A very important step after the initial network
setup is to ensure that no specific part of the network itself,
other than the intentionally constrained router-to-router
path, will present a resource limit for the experiments that
are run. Hence, a series of experiments were run with target
loads of bytes and packets similar to the final set of
experiments and the CPU, memory, and NIC utilizations
from all the machines were recorded to ensure that none
represented a resource constraint. The experiments were
then run with each experiment having exactly the same set

of connections from the original trace but with their
internal connection structure and RTT emulated in different
ways as described in section 3. Each experiment was run
for 60 minutes but data used in the results was collected
only during the middle 40 minutes to eliminate startup and
termination effects.

5. EFFECT OF RTT ON CONNECTION
DURATION AND RESPONSE TIME

 We begin with the effects of RTT on user visible
measures of TCP performance, namely connection duration
and response time in an unconstrained network. Connection
duration is simply the time between the transmission of the
first data byte of a connection and the receipt of the last
data byte. Response time is the time between the
transmission of the first data byte of a request and the
receipt of the last data byte of its response. For block
sequential, connection duration and response time are the
same (since block sequential connections consist of a single
“request-response” exchange). For connection structures
such as a-b and a-t-b-t, connection duration is the sum of
the response times of all the request-response exchanges
within the connection, including any endpoint latencies (if
present).
 Figure 6a shows the effects of various paradigms of
RTT emulation on connection duration for generation of
the UNC workloads using the block concurrent and a-t-b-t

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

blk-conc.meanrtt
blk-conc.10pathrtt

blk-conc.usernet
a-t-b-t.meanrtt

a-t-b-t.10pathrtt
a-t-b-t.usernet

Figure 6b: Connection Duration – IBM

models for TCP connections. Focusing on the performance
of the block-concurrent connections for the moment, we
see that in these experiments, approximately 80% of the
connections complete within 500 ms. For these flows, not
surprisingly, RTT has a pronounced effect. For example,
50% of the connections complete in approximately 250 ms
or less under the 10-path model of RTT emulation whereas
50% of the connections complete in approximately 125 ms
or less under the more realistic usernet model of RTT
emulation. Thus, the median connection duration is shifted
by a factor of two by the choice of RTT emulation model.
Figure 6a clearly shows that how one deals with RTT can
have a very significant effect on a performance measure
such as connection duration. An experimenter can realize a
wide range of distributions of connection durations simply

82

by their choice of RTT emulation method. Our results
(plots not included here) also show that the same is true for
response times.
These experiments confirm the well-known fact that RTT
has a significant impact on TCP performance and
underscore the need to pay attention to proper RTT
emulation when performing experiments. But how does
connection structure affect performance? Looking more
broadly at Figures 6a and 6b, it is clear that while the
paradigm of RTT emulation used has a significant effect on
the distributions of connection durations, the effects of
connection structure are greater. In particular, for the last
40% of the distribution, the structure of the connections has
a far greater impact on connection duration than RTT.
Whereas for a given connection structure, RTT affects
connection duration by a factor of two, for a given RTT
emulation method, connection structure affects connection
duration by up to a factor of 8 (see also Figures 7a and 7b).
This effect is even more pronounced in the generation of
the IBM traffic as shown in Figure 6b. Here, the durations
of 80% of the connections are more influenced by
connection structure than RTT.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

blk-conc.usernet
blk-seq.usernet

a-b.usernet
a-t-b-t.usernet

Figure 7a: Connection Duration – UNC

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

blk-seq.usernet
a-b.usernet

a-t-b-t.usernet

Figure 8a: Response Time – UNC

 The following sections show that this result holds for
other important measures of application and network
performance. Henceforth, we only show results for one
model of RTT emulation, namely the usernet model [8]
(wherein each connection is assigned the minimum RTT
that was measured for that connection). We do this because
this is the most realistic method of RTT emulation –
however, we have verified through extensive

experimentation that the conclusions below hold for all the
methods of RTT emulation we have considered.

6. EFFECT OF CONNECTION STRUCTURE
ON CONNECTION DURATION AND
RESPONSE TIME

Figures 7a and 7b show the full effect that connection
structure has on connection duration in an unconstrained
network using UNC and IBM traffic respectively. These
results confirm our intuition that block concurrent
connections would have the “lightest” distribution of
durations (i.e., that connections would have the shortest
durations when generated using the block concurrent model
since both endpoints of the connection transmit all their
bytes at once and at the same time), and that the a-t-b-t
connections would have the “heaviest” distribution of
durations (i.e., that connections would have the longest
durations when generated using the a-t-b-t model since
endpoints alternate the transmission of ADUs and incur any
endpoint latencies before transmitting).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000 2500 3000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Connection Duration in milliseconds

blk-conc.usernet
blk-seq.usernet

a-b.usernet
a-t-b-t.usernet

Figure 7b: Connection Duration – IBM

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

blk-seq.usernet
a-b.usernet

a-t-b-t.usernet

Figure 8b: Response Time – IBM

 Figures 8a and 8b show the effect that connection
structure has on the response time of request-response
exchanges (recall that response time is only defined for the
blk-seq, a-b, and a-t-b-t models of connection structure; the
blk-conc model has no notion of request-response
exchanges). Our intuition is generally confirmed with these
results, namely that the more structure that is present in the
model, the longer the response time, although the IBM data

83

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

a-b.usernet-unconstrained
a-t-b-t.usernet-unconstrained

a-b.usernet-constrained
a-t-b-t.usernet-constrained

Figure 9a: Response Time – UNC

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Queue Length in packets

blk-conc.usernet
blk-seq.usernet

a-b.usernet
a-t-b-t.usernet

Figure 10a: Queue length – UNC

do not strictly follow this pattern. Figure 8a further
emphasizes the role of structure in the UNC connections
because the blk-seq connection epochs have faster response
times than the a-t-b-t epochs due to the lack of server
processing times in the blk-seq connections. Conversely,
Figure 8b shows that for 30% of the request-response
exchanges, the a-t-b-t model of connection structure
generates shorter response times than the blk-seq model.
That is, the presence of endpoint latencies in the a-t-b-t
model, can, for a subset of connections, result in shorter
response times for request-response exchanges. This shows
that subtle interactions between flows that are a function of
data sizes and latencies can exist and lead to counter
intuitive results. The existence of these interactions further
argues for a careful consideration of the appropriate
connection structure to use when generating TCP
connections.

7. EFFECT OF CONNECTION STRUCTURE
ON NETWORK LEVEL PERFORMANCE
MEASURES

These subtle interactions between structural elements are
also apparent when considering the effects of congestion on
flows. Figures 9a and 9b show the response time of a-b and
a-t-b-t flows in both a constrained, bandwidth limited
environment, and an unconstrained environment. On the
one hand, the results for the experiments using the a-b
connection structure seem obvious: response times degrade
significantly (become longer) in the constrained
environment.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Response Time in milliseconds

a-b.usernet-unconstrained
a-t-b-t.usernet-unconstrained

a-b.usernet-constrained
a-t-b-t.usernet-constrained

Figure 9b: Response Time – IBM

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

Queue Length in packets

blk-conc.usernet
blk-seq.usernet

a-b.usernet
a-t-b-t.usernet

Figure 10b: Queue length – IBM

The median response time is approximately four times
greater in the constrained environment than in the
unconstrained environment. Surely this is the effect of
congestion induced by the bandwidth constraint. But is the
bandwidth constraint inherently causing the gross shift in
response time or is connection structure playing a role?
Figures 9a and 9b show that in fact connection structure is
impacting response times more so than any bandwidth
constraint. Figures 9a and 9b show that while the response
times of a-t-b-t connections are also negatively affected by
the bandwidth constraint, the effect is quite modest. Thus if
one were to perform experiments using the a-b flows, they
would possibly erroneously conclude that the bandwidth
constraint would have a very large effect on the original
UNC or IBM traffic when the reality is that this is not quite
the case.
 Of particular note is the fact that in the experiments in
the constrained environment, request-response exchanges
for a-t-b-t flows, exchanges that include endpoint latencies,
have shorter response times than the request-response
exchanges of the a-b flows (exchanges that do not include
any endpoint latencies). That is, intuitively we might expect
that request-response exchanges modeled in a-b flows
should always have shorter response times than the same
exchanges in a-t-b-t flows. Figures 9a and 9b show that this
is not the case.

 To understand this interaction, it is useful to consider
the impact of connection structure on network level
measures of performance such as the lengths of queues at
routers. For the experiments illustrated in Figures 9a and

84

9b, Figures 10a and 10b show the distribution of the
number of packets queued at the bottleneck router over
time. As Figures 10a and 10b show, connection structure
has a very significant impact on router queue length. In
particular, Figures 10a and 10b show that a-t-b-t flows
produce dramatically shorter queues in the bandwidth
constrained experiments. Even though a-b flows and a-t-b-t
flows transfer the same number of bytes according to the
same pattern of request-response exchanges, because a-b
flows attempt to transmit data “faster” (since the end
systems in the a-b traffic generation do not pause between
transmissions as end systems in the measured networks
did), the a-b flows in a constrained environment actually
end up transmitting data slower because they induce longer
queues at the router. For this reason, the response times of
a-b request response exchanges which have no endpoint
latencies (other than connection RTTs), take significantly
longer than a-t-b-t request response exchanges which do
have them. The endpoint latencies present in the a-t-b-t
model have a significant smoothing effect on the traffic
arriving at the bottleneck router, allowing the router queue
to drain more often.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 A

ct
iv

e
C

on
ne

ct
io

ns

Time in minutes

blk-seq.usernet
blk-conc.usernet

a-b.usernet
a-t-b-t.usernet

Figure 11: Active Connections – UNC

 Thus, if one were to perform buffer sizing experiments
for a given router, the structure of the traffic used to test
any sizing policy would clearly greatly impact the results.
A related measure of network performance is the number of
connections active at any one time (the number of
connections for which a SYN has been sent but no FIN or
RST has yet been generated). Number of active
connections is a measure that influences router buffer
sizing as well as queuing disciplines that attempt to provide
differing levels of service to flows.
 Figure 11 shows a time series of the number of active
connections for experiments using our four models of
connection structure. Once again, the structure of
connections has a dramatic effect on performance. For
the UNC traffic, experiments using the a-t-b-t model of
connection structure generate nearly a factor of 10 times
greater number of active connections than experiments
using the other models. We observed a factor of 14 times
greater number of active connections for experiments with
the a-t-b-t model, compared with other models, when using
IBM traffic. That result is not shown here due to space
limitations. We note, however, that Figures 10a and 11

combine to show that while the a-t-b-t experiments result in
significantly more connections being active at any given
time, these flows nonetheless generate significantly shorter
queues in the constrained environment (and according to
Figure 9a, result in shorter response times).

8. RELATED WORK
Most of the early work in workload generation focused

on one or a limited set of application protocols such as
FTP, Telnet, and SMTP [13], HTTP [4] [5] [10] [11],
RealAudio [12] and other forms of multimedia [7] [9]. The
obvious limitation of these approaches is that real links
carry a continuously evolving mix of hundreds or
thousands of different “applications” so that modeling each
application or application class is clearly an approach with
many difficulties and does not scale well.

Harpoon was a landmark contribution because it
addressed the issue of representing a complete set of
applications using both TCP and UDP transport protocols
without specific knowledge of application protocols or port
usage. Swing and Tmix follow this approach but depart
from the Harpoon approach by using the additional
information available in a packet header trace to represent
the internal dynamic structure of connections that reflects
application-level operations. Swing also includes
characterizations of the “user” and “session” interarrivals
which implicitly determine connection start times (Tmix
uses the measured relative start times of connections).
Harpoon, Swing and Tmix all generate traffic by read/write
operations on sockets using real TCP/IP protocol stacks.

Both Harpoon and Swing use distribution-based models
parameterized from analysis of empirical data that are then
used with random sampling methods to generate
statistically representative workloads in laboratory
networks. Tmix, however, emphasizes faithful replays in
the laboratory using derived details about each connection
to create a replay trace that is used to initiate operations at
the socket level to generate workloads. In addition to the
details of request-response exchanges, Tmix can reproduce
the relative start time, RTT, receiver maximum window
size, and loss rate for each connection found in the original
tcpdump from a production link. We chose the Tmix
generation system [8] for conducting our experiments
because of its capabilities for implementing all the different
connection structures and RTT emulations that we use.
While we chose to use Tmix, we expect similar results
could be obtained with other tools, especially Swing.

Recently, there has been increased awareness and
consensus among networking researchers for the need to
create a common TCP evaluation suite. In [3], the authors
create a case for a common evaluation standard for TCP
evaluations. Their paper does not present results of
experimentation, but acted as a catalyst for discussions on
this topic. This led to an ongoing effort by the Transport
Modeling Research Group (TMRG) in the IRTF to come
up with a consensus for a baseline standard for TCP

85

evaluation. In [2], the authors describe the requirements for
a TCP evaluation suite. They propose a benchmark
consisting of a set of network configurations (that is,
topologies, routing matrix, etc.), a set of workloads (that is,
traffic generation rules), and a set of evaluation metrics.
The benchmark would have two modes: NS simulation
mode, and hardware experiment mode. The fact that Tmix
is used in the TMRG TCP evaluation suite also influenced
our decision to use it for this study. The TMRG effort,
however, is concerned with defining the benchmark and not
with research on issues about how details of benchmarks
may influence the outcomes in experimental network
research.

The researchers that developed the Harpoon, Swing, and
Tmix workload generators reported extensive validations to
show that the resulting synthetic packet-level traffic on an
emulated network link was a realistic or faithful
reproduction of the traffic seen on a real-world network
link. To the best of our knowledge, however, ours is the
first research that explores in detail the effects of using
different models of application workloads and path
characteristics on various metrics of network performance.

9. CONCLUSIONS
 In this paper, we show the results of testbed
experiments generating TCP traffic from measurement data
from two very different traffic sources. Using several
models of TCP application workload structure, we
demonstrate the strong effects of application and
connection structure on performance measures such as
queue length at routers, active connections in the network,
connection response times, and connection durations. We
provide empirical data showing that while RTT matters for
these important performance metrics, the structural
properties of TCP application workloads generated have an
even larger impact on performance than do RTTs. These
results show that detailed measurements of network traffic
are required if one is to generate credible synthetic versions
of the measured traffic in experiments.
 Having demonstrated that “structure matters,” this
work obviously begs the question of which structure, or
which paradigm of synthetic traffic generation of
applications is better than another and which paradigm is
“best”? This is not a question we address in this work. We
do not shy away from this important question but rather we
believe that there is no right answer. In any simulation or
emulation, one is always faced with this fundamental
question: how “real” does an experiment have to be in
order to be realistic? Ultimately this is a question for a
research community to address through discussion and
development of best practices and standards. However,
such a discussion needs to be informed by data. In this
paper we provide some preliminary data to further the
discussion of best practices towards developing
benchmarks for empirical networking research. Without a
set of benchmarks for traffic workload modeling, we

cannot realistically compare experimental results from
different testbeds or research groups, or validate a set of
published results.

 REFERENCES
[1] J. Aikat, S. Hasan, K. Jeffay, F.D. Smith, Discrete-

Approximation of Measured Round Trip Time
Distributions: A Model for Network Emulation,
GENI Research and Education Experiment
Workshop 2012 (GREE12), March 2012.

[2] L. Andrew, S. Floyd, and G. Wang, Common TCP
Evaluation Suite, Internet draft, July 2009.

[3] L. Andrew, C. Marcondes, S. Floyd, L. Dunn, R.
Guillier, W. Gang, L. Eggert, S. Ha, and I. Rhee,
Towards a common TCP evaluation suite,
Proceedings of PFLDnet, March 2008.

[4] P. Barford and M. E. Crovella, Generating
representative web workloads for network and server
performance evaluation, Proceedings of ACM
SIGMETRICS, pages 151–160, 1998.

[5] J. Cao, W.S. Cleveland, Y. Gao, K. Jeffay, F.D.
Smith, and M.C. Weigle, “Stochastic Models for
Generating Synthetic HTTP Source Traffic,”
Proceedings of INFOCOM 2004, pp. 1546-1557

[6] S. Floyd and V. Paxson, Difficulties in simulating the
internet, IEEE/ACM Transactions on Networking,
9(4):392–403, August 2001.

[7] M. Garrett, and W. Willinger, Analysis, Modeling,
and Generation of Self-Similar VBR Video Traffic,
Proc. ACM SIGCOMM ’94.

[8] F. Hernandez-Campos, K. Jeffay, and F. D. Smith,
Modeling and Generation of TCP Application
Workloads, Proceedings of the Fourth IEEE
International Conference on Broadband
Communications Review, September 2007.

[9] D. Heyman, and T.V. Lakshman, Source Models for
VBR Broadcast Video Traffic, In IEEE/ACM ToN,
vol. 4, no 1, pp. 37−46, Feb. 1996

[10] L. Le, J. Aikat, K. Jeffay, and F. D. Smith, The
effects of active queue management and explicit
congestion notification on web performance,
IEEE/ACM Transactions on Networking,
15(6):1217–1230, December 2007.

[11] B. Mah, An Empirical Model of HTTP Network
Traffic, Proc. IEEE INFOCOM ‘97

[12] Mena, and J. Heidemann, An Empirical Study of
Real Audio Traffic, Proc. IEEE INFOCOM 2000

[13] V. Paxson. Empirically Derived Analytic Models of
Wide-Area TCP Connections, IEEE/ACM ToN, 2 (4)
316-36, August 1994

[14] J. Summers and P. Barford, Self-configuring network
traffic generation, Proceedings of Internet
Measurement Conference, 2004.

[15] Tmix, http://netlab.cs.unc.edu/Tmix
[16] K. Vishwanath and A. Vahdat, Swing: Realistic and

responsive network traffic generation, IEEE/ACM
Transactions on Networking, August 2009.

86

