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Abstract – Networking research would be well served by 
the adoption of a set of traffic benchmarks to model 
network applications for empirical evaluations; such 
benchmarks are common in many other areas of 
computing. While it has long been known that certain 
aspects of modeling traffic, such as round trip time, can 
dramatically affect application and network performance, 
there is still no agreement as to how such components 
should be controlled within an experiment.   
 In this paper we advance the discussion of standards 
for empirical networking research by demonstrating how 
certain components of network traffic, such as the structure 
of application data exchanges within a TCP connection, can 
have a larger impact on the results obtained through 
experimentation than other dimensions of traffic such as 
round-trip time. Such findings point to the pressing need 
for traffic benchmarks in networking research. 
 Through testbed experiments performed with 
synthetically generated network traffic from two very 
different traffic sources, and using several models of TCP 
connection structure, we demonstrate the strong effects of 
connection structure in traffic workload modeling on 
performance measures such as queue length at routers, 
number of active connections in the network, user response 
times, and connection durations.  
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1. INTRODUCTION AND MOTIVATION 
 In their seminal paper, Floyd and Paxson [6] 
articulated the challenges to performing realistic and 
meaningful experiments. The research community 
responded and over time, ever more sophisticated means of 
performing evaluations of proposed network improvements 
using simulation, emulation, and live experimentation have 
been developed. Software simulators (e.g., ns-2, ns-3, and 
GTNets), laboratory testbeds (e.g., Emulab), and wide-area 
network testbeds, e.g. GENI (Global Environment for 
Network Innovation) have evolved to provide capabilities 
to more faithfully reproduce protocol and network 
dynamics that occur on production networks. 
 Synthetic traffic is vital to performing reproducible, 
controlled experiments. Traffic generation itself contains 

several important components. It is widely accepted that 
emulating round trip time (RTT) is a key factor in faithfully 
representing traffic conditions on production networks. 
However, there is little attention given to emulating the 
application-level data exchanges, we call connection 
structure, within the TCP connections which dominate 
Internet traffic.  State of the art traffic generation tools, 
such as Harpoon [14], Tmix [8], and Swing [16], all 
provide a means of turning measurements of production 
network links into “realistic” synthetic traffic. The traffic is 
realistic because it directly reproduces measurements of 
real traffic such as total number of flows present, total 
number of bytes transmitted, and emulates some model of 
measured RTT. However, even as these tools exist, the 
adoption of such realistic traffic emulation has been slow. 
 Leading network performance evaluation studies 
reveal that there is no accepted best practice for connection 
structure emulation in network experiments. Previous 
studies [8] have shown that using per-connection RTTs for 
traffic generation faithfully represents the realistic 
conditions captured on the production network. But how 
does connection structure used to generate traffic in an 
experiment affect the outcome of that experiment?  

In this paper we make the case that structure of the 
synthetic traffic used in experimentation matters. By 
“structure” we mean the extent to which, for example, a 
synthetic TCP connection mirrors the pattern of 
application-level data exchanges of a TCP connection on 
some production network. While on its face, this can hardly 
be a surprising result (after all, how could traffic structure 
not matter?!), what we believe will be surprising for most 
readers is the extent to which modeling such structure does 
matter for performance studies.  

Here we provide empirical data that structure matters 
even more than RTT. Specifically we show that for several 
important performance metrics, the structural properties of 
the TCP connections in traffic generation have a larger 
impact on performance than do RTTs. These data suggest 
that if one wants to perform experiments from which 
conclusions can be drawn that can be applied on real 
networks, the structure of the traffic used in experiments 
are at least as important, if not more important, than RTT. 
We focus on a comparison against the effects of RTT on 
performance simply because we feel that among the many 
measures of traffic that affect performance, RTT is likely 
the most understood and appreciated parameter. 
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 In this paper, we present the results of extensive 
experiments comparing the effects of several synthetic 
traffic generation paradigms on familiar measures of 
network performance. We compare different connection 
structures to generate the same traffic input from two 
different sources, and compare the results for four 
performance metrics: queue length at routers, number of 
active connections in the network, user response times, and 
connection durations. These performance metrics are not 
specific to our experiments. They represent application 
performance at the ends, through measuring connection 
duration and response times, and network performance 
through measuring the queuing dynamics for a FIFO (first-
in-first-out) queue and the number of active connections in 
the network.  

 Our results show the following. First, we confirm that 
RTT matters. For any given paradigm of synthetic traffic 
generation, and for any of our performance measures, 
different results are obtained when one varies the manner in 
which RTTs are assigned to connections. However, for a 
given RTT assignment scheme, the variation in 
performance seen by varying the connection structure 
exceeds that observed when varying RTTs. This 
demonstrates that all things being equal, connection 
structure can have an effect on measures of network 
performance at least as great as, and usually greater than 
RTT. Specifically, adding endpoint latencies (think times) 
to the connection structure significantly shifts the results 
for any experiment. Therefore, unless one pays attention to 
connection structure, it will be difficult to reach 
fundamental conclusions about the results of experiments.  

 
2. TRAFFIC GENERATION 

 In this section we define the key workload and network 
characteristics that are varied in our experiments. These 
include the connection structure of a TCP connection, the 
RTT, and the receiver maximum window size. 
 

2.1 Connection Structure 
 We represent the structure in modeling application data 
exchanges by the connection structure for the underlying 
TCP connection. This is modeled in two dimensions – size 
and time. The size dimension defines the counts of bytes 
transferred by the connection in both directions. The time 
dimension models the internal dynamics of a connection 
consisting of any synchronization and latencies introduced 
by exchanges of application-level protocol data units, 
typically in a request-response pattern as in a client-service 
model of communication. The time dimension includes all 
the “endpoint latencies” related to synchronization between 
requests and responses, the elapsed time between a request 
and its response (“server” latency) or between subsequent 
requests (“client” latency).   
 We represent connection structures in this study by 
starting with a simple model, based on Harpoon [14] for 
structures defined only in the size dimension. Consider an 

exchange between two TCP endpoints that transfers a total 
of X bytes in one direction and Y bytes in the opposite 
direction over the duration of the connection. Harpoon 
would use two separate connections for each original 
connection with a unidirectional transfer in each connection 
of all the bytes in a given direction in a single block. We 
modified this concept to use a single TCP connection for 
each original connection, but with two different methods of 
synchronizing the bidirectional data transfers. In both 
methods, all the bytes flowing in one direction are sent as 
one large block without internal gaps or latencies. In one 
method, the two blocks are sent concurrently in both 
directions while in the other method the two blocks are sent 
sequentially as a single request-response exchange. We call 
the first method the block-concurrent (blk-conc) model and 
the second method the block-sequential (blk-seq) model.  
 The two ways of representing connection structure 
described so far are based solely on the size component of 
connections.  To introduce the time dimension, we turn to 
the representations exemplified by the Swing and Tmix 
traffic generators. Because we have chosen to use the Tmix 
traffic generation system in our research, we will adopt 
their terminology to explain the connection structures with 
both size and time dimensions. In Tmix each connection 
found in a trace of TCP/IP headers from a production 
network link is analyzed to produce a “connection vector” 
representation. The connection vector includes the 
connection’s start time relative to the beginning of the trace 
and a descriptor of each request-response exchange found 
by the analysis tool. A request-response exchange (called 
an “epoch”) is described by a 4-tuple consisting of the 
request size (called the a unit size), the response size 
(called the b unit size) and two latency values (called the t 
values) for the time between a request and its response and 
the time between successive epochs. Unidirectional 
transfers have only an a or b value depending on the 
direction of transfer. A high level summary of the Tmix 
analysis and generation framework is given in Figure 1. 
 

 
Figure 1: Traffic Generation 

 

 Using this framework, we can describe several 
variations for representing connection structures. First, we 
could retain the set of epochs representing the request-
response exchanges along with the a and b values for each 
epoch but without any of the t values. This representation 
that we call the “ab model” includes the time dimension 
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only for the implied synchronization between a request and 
its response. The full representation (the “a-t-b-t model”) 
adds the latency between a request and its response (server 
processing time) and between successive requests (client 
processing and user “think” times), if they exist in the 
original traffic. 
 The Tmix traffic generation system allows us to easily 
construct all the above described connection structures to 
represent the same set of TCP connections found in a link 
trace. This is done by using the Tmix analysis tools to 
generate the connection vectors containing the full 
representation (a-t-b-t) and then applying processing scripts 
to generate new connection vectors representing different 
structures but retaining the desired properties from the 
original TCP connection.  
 Thus, we have four distinctive cases (blk-conc, blk-seq, 
ab, and a-t-b-t). The blk-conc structure includes the total 
number of bytes transferred in each direction but none of 
the time dimensions for request-response synchronization 
or latencies within or between exchanges. The blk-seq 
structure is similar but models a minimal structure by 
sending the bytes in the two directions sequentially, like 
one request-response exchange. The ab structure explicitly 
represents the bytes transferred for each request-response 
exchange (epoch) along with the inherent synchronization 
between requests and responses, but no latencies within or 
between exchanges. The a-t-b-t structure is a full 
representation of all sizes, synchronization, and timings in 
the connections. 

 

2.2 Round Trip Time Emulation 
 We experimented with seven different methods of 
emulating RTTs in our experiments. All of these have been 
used in previously published work. For one extreme we 
first tried emulating no RTT latency beyond that inherent in 
the laboratory network used in the experiments which is 
typically 1 millisecond or less (reasonable for studying 
local networks but obviously wrong for wide-area 
emulation). At the other extreme, we used the Tmix 
capability to emulate the specific minimum RTT found for 
each connection by analyzing the TCP/IP header traces.  
 We also experimented with emulating a single value 
for all connections, either the mean or median of the RTTs 
found by analyzing the TCP/IP header traces. Another form 
of RTT emulation was done by assigning a small set of 
values to the paths between pairs of traffic generator 
machines in the lab network. The network described in 
section 5 has a maximum of 30 paths between pairs of 
generator machines. In one case, we assigned a unique 
emulated RTT to the path between sets of three pairs (a 
total of 10 path RTTs). The values chosen for this case 
were the values recommended for the TMRG common TCP 
evaluation suite [2]. In a second variation, we assigned a 
unique RTT value for each of the 30 paths between pairs of 
generator machines. In this case, we used a discrete 
approximation to the RTT distribution [1] found from 
analysis of the traces (see Figure 3).  

 While we ran experiments with the full cross product 
of connection structures and RTT emulations, we report 
results here only for the most distinctive cases of RTT 
emulation: mean RTT for the traffic data emulated for 
every connection (labeled “meanRTT”), 10 path RTT 
values (“10pathRTT”) and the emulation of the specific 
minimum RTT found for each connection by analyzing the 
TCP/IP header traces (called “usernet” after the name of 
the Tmix component that emulates per-connection RTTs). 
 

2.3 Receiver window sizes 
 For all the experiments discussed in this paper, we 
assigned each side of every connection the maximum 
receiver window size exactly as was determined from 
analysis of the original trace. We also ran experiments 
where the maximum receiver window sizes were fixed for 
all connections as 8KB, 16KB, or 64KB. Results for the 
latter set are not reported here.  
It is important to emphasize that all the results presented 
here are based on the same raw measurements (two packet 
header traces). The only differences are in the choices of 
how we modeled the application data exchanges in the 
traffic and how we emulated RTT for traffic generation.  
 

3. TRAFFIC CHARACTERISTICS 
 We use two very different network traces collected at 
two diverse locations on the Internet in all our experiments. 
Both traces are one hour long. The first one, we refer to as 
“UNC” was taken on the campus border link of a large US 
university campus, connecting the campus to the Internet. 
The second trace was taken at an aggregation switch for 
four internal networks at one of IBM Corporation’s large 
development sites. The trace includes all traffic between 
these networks and an external Internet service provider.  
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Figure 2: Link throughput / offered load 

 

 The campus trace was captured on Jan 10, 2008 from 2 
to 3 PM on a weekday, which represents a very busy 
typical day at the university. The IBM trace was captured 
on Oct 10, 2006, for an hour, starting at 2:20 PM, which is 
also representative of typical peak workday traffic on this 
corporate network. We chose these two traces to 
demonstrate our results because of their diverse 
characteristics. The UNC trace has about 4.7 million 
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connections with an offered load of 471 Mbps in one 
direction and 202 Mbps in the other. The IBM trace has 
about 2.8 million connections with an offered load of 404 
Mbps in one direction and 366 Mbps in the other. Figure 2 
shows the link throughput for both traces in the high 
throughput direction only. 
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Figure 3: RTT and epochs - CDF 
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Figure 4: RTT and epochs - CCDF 

   

 The mean RTT for connections in the UNC trace was 80 
ms while in the IBM trace, it was 92 ms. On average, the 
connections in the UNC trace used 4 epochs to transfer 
bytes with a standard deviation of 22. The IBM trace had a 
mean of 9 epochs with a standard deviation of 123. 

  

Traffic 
source 

Median/Mean server 
processing times 

Median/Mean user 
think times 

UNC 47 ms / 3.1 s 173 ms / 5.6 s 
IBM 53 ms / 4.7 s 55 ms / 5.9 s 

 

Table 1: Server Processing and User Think Times 
 

 The cumulative distribution of round trip times and 
number of epochs for both traces are shown in Figure 3, 
with their complementary cumulative distributions shown 
in Figure 4. The connection sizes in total bytes transferred 
differed significantly between the two traces as well. The 
UNC connections transmitted roughly 50KB on average 
while the mean for IBM connections was 129KB. The 
standard deviation for the bytes transferred was 1.3MB and 
5.5MB respectively.  

As shown in Table 1, there was also a significant 
difference in the measured server processing times and user 
think times between the two traces. This latency contributes 
directly to response times for request-response exchanges, 
as well as connection durations. The connection durations 
in turn affect the number of active connections seen in the 
network at any given moment.  
 

4. EXPERIMENTAL METHODOLOGY 
We conducted experiments using a laboratory network 

configured to emulate the real-world environments where 
the traces we use in the evaluations were captured – at a 
link connecting a large university or enterprise campus to 
its Internet service provider. The laboratory network used 
to emulate this environment is shown in Figure 5. At each 
edge of the network are 30 workload generator systems 
which are Intel-architecture machines with speeds ranging 
from 0.5 to 3.0 GHz running FreeBSD 6.0. The 30 
machines on the left side in the figure handle generation 
tasks to emulate the workload generated by application 
processes on the university or enterprise campus while the 
30 machines on the right side emulate the workloads from 
application processes located anywhere in the Internet. 

We used the Tmix traffic generation system (that can be 
obtained from the contact given in [15]) on all 60 machines 
to create workloads based on different connection 
structures, and to emulate per-connection RTTs with 
different methods (described in section 3).  
 

 
Figure 5: Experimental Network Setup 

 

 The core of this network consists of two Ethernet 
switches that aggregate the packet traffic from the 
generator machines on each edge. The two switches each 
have a fiber uplink to a 10 Gbps NIC in a 3.6 GHz machine 
that runs FreeBSD 6.0 and acts as a software router 
between the two sides of the network. The two router 
machines are connected by a 1 Gbps link. For calibrations 
and for experiments with an uncongested network 
(“unconstrained mode”) the 1 Gbps link is used directly 
since its capacity is significantly greater than the load 
generated from either trace. For experiments with a link 
operating under a load that is near saturation (95% of link 
capacity), the dummynet bandwidth emulation function 
was used to constrain the link bandwidth (“constrained 
mode”) to the target capacity of the router-to-router link set 
to 496Mbps for the university trace, and 424Mbps for the 
IBM trace.  In all cases the router queues were set to a very 
large size (> 10,000 packets) which was determined to be 
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sufficient to avoid any packet drops at the queue loss rates 
were not a factor in any of the results, even in constrained 
mode. Measures of unbounded queue lengths have proven 
useful in the past for assessing issues of router buffer sizing 
and for understanding packet arrival processes. The Tmix 
capability to emulate RTTs on a per-connection basis 
(“usernet”) means that the simple dumbbell topology of the 
lab network can have a similar effect on the dynamic time-
dependent behavior of TCP connections as would be 
encountered in a real wide-area network.  
 To monitor traffic in the lab network, we used two 
monitoring machines with passive optical taps. One was 
placed on the 10 Gbps uplink between the switch and the 
router machine on the left side of the network. This monitor 
used an Intel 10 Gbps NIC with a locally modified version 
of tcpdump that counted packets and bytes sent from the 
switch to the router in one millisecond intervals. The 
second monitor was placed on the 1 Gbps link between the 
routers. Two Intel 1 Gbps NICs (one for each direction) are 
used to count packets and bytes in 1 millisecond intervals 
and to take a tcpdump of only SYN, FIN, or RST packets 
(to count active connections).  A monitoring program run 
on the routers creates a log of the queue size (number of 
packets in the queue) sampled every 10 milliseconds. The 
traffic generator programs measured and recorded all the 
metrics related to application or user perceived 
performance at the end systems (connection durations, 
response times, etc.) 
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Figure 6a: Connection Duration – UNC 

 

Although the results for only a subset of experiments are 
presented in the next few sections, we ran a large number 
of additional experiments. First, we calibrated the network. 
There are some critical elements of our experimental 
procedures that had to be validated before performing 
experiments. A very important step after the initial network  
setup is to ensure that no specific part of the network itself, 
other than the intentionally constrained router-to-router 
path, will present a resource limit for the experiments that 
are run. Hence, a series of experiments were run with target 
loads of bytes and packets similar to the final set of 
experiments and the CPU, memory, and NIC utilizations 
from all the machines were recorded to ensure that none 
represented a resource constraint. The experiments were 
then run with each experiment having exactly the same set 

of connections from the original trace but with their 
internal connection structure and RTT emulated in different 
ways as described in section 3. Each experiment was run 
for 60 minutes but data used in the results was collected 
only during the middle 40 minutes to eliminate startup and 
termination effects. 
 

5. EFFECT OF RTT ON CONNECTION           
DURATION AND RESPONSE TIME  

 We begin with the effects of RTT on user visible 
measures of TCP performance, namely connection duration 
and response time in an unconstrained network. Connection 
duration is simply the time between the transmission of the 
first data byte of a connection and the receipt of the last 
data byte. Response time is the time between the 
transmission of the first data byte of a request and the 
receipt of the last data byte of its response. For block 
sequential, connection duration and response time are the 
same (since block sequential connections consist of a single 
“request-response” exchange). For connection structures 
such as a-b and a-t-b-t, connection duration is the sum of 
the response times of all the request-response exchanges 
within the connection, including any endpoint latencies (if 
present).  
 Figure 6a shows the effects of various paradigms of 
RTT emulation on connection duration for generation of 
the UNC workloads  using the block concurrent and a-t-b-t  
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Figure 6b: Connection Duration – IBM 

 

models for TCP connections. Focusing on the performance 
of the block-concurrent connections for the moment, we 
see that in these experiments, approximately 80% of the 
connections complete within 500 ms. For these flows, not 
surprisingly, RTT has a pronounced effect. For example, 
50% of the connections complete in approximately 250 ms 
or  less under the 10-path model of RTT emulation whereas 
50% of the connections complete in approximately 125 ms 
or less under the more realistic usernet model of RTT 
emulation. Thus, the median connection duration is shifted 
by a factor of two by the choice of RTT emulation model. 
Figure 6a clearly shows that how one deals with RTT can 
have a very significant effect on a performance measure 
such as connection duration. An experimenter can realize a 
wide range of distributions of connection durations simply 
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by their choice of RTT emulation method. Our results 
(plots not included here) also show that the same is true for 
response times.  
These experiments confirm the well-known fact that RTT 
has a significant impact on TCP performance and 
underscore the need to pay attention to proper RTT 
emulation when performing experiments. But how does 
connection structure affect performance? Looking more 
broadly at Figures 6a and 6b, it is clear that while the 
paradigm of RTT emulation used has a significant effect on 
the distributions of connection durations, the effects of 
connection structure are greater. In particular, for the last 
40% of the distribution, the structure of the connections has 
a far greater impact on connection duration than RTT. 
Whereas for a given connection structure, RTT affects 
connection duration by a factor of two, for a given RTT 
emulation method, connection structure affects connection 
duration by up to a factor of 8 (see also Figures 7a and 7b). 
This effect is even more pronounced in the generation of 
the IBM traffic as shown in Figure 6b. Here, the durations 
of 80% of the connections are more influenced by 
connection structure than RTT. 
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Figure 7a: Connection Duration – UNC 
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Figure 8a: Response Time – UNC 

 

 The following sections show that this result holds for 
other important measures of application and network 
performance. Henceforth, we only show results for one 
model of RTT emulation, namely the usernet model  [8] 
(wherein each connection is assigned the minimum RTT 
that was measured for that connection). We do this because 
this is the most realistic method of RTT emulation – 
however, we have verified through extensive 

experimentation that the conclusions below hold for all the 
methods of RTT emulation we have considered.  

 

6. EFFECT OF CONNECTION STRUCTURE 
ON CONNECTION DURATION AND         
RESPONSE TIME  

Figures 7a and 7b show the full effect that connection 
structure has on connection duration in an unconstrained 
network using UNC and IBM traffic respectively. These 
results confirm our intuition that block concurrent  
connections  would have the “lightest” distribution of 
durations (i.e., that connections would have the shortest 
durations when generated using the block concurrent model 
since both endpoints of the connection transmit all their 
bytes at once and at the same time), and that the a-t-b-t 
connections would have the “heaviest” distribution of 
durations (i.e., that connections would have the longest 
durations when generated using the a-t-b-t model since 
endpoints alternate the transmission of ADUs and incur any 
endpoint latencies before transmitting).  
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Figure 7b: Connection Duration – IBM 
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Figure 8b: Response Time – IBM 

 

 Figures 8a and 8b show the effect that connection 
structure has on the response time of request-response 
exchanges (recall that response time is only defined for the 
blk-seq, a-b, and a-t-b-t models of connection structure; the 
blk-conc model has no notion of request-response 
exchanges). Our intuition is generally confirmed with these 
results, namely that the more structure that is present in the 
model, the longer the response time, although the IBM data  
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Figure 9a: Response Time – UNC 
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Figure 10a: Queue length – UNC 

 

do not strictly follow this pattern. Figure 8a further 
emphasizes the role of structure in the UNC connections 
because the blk-seq connection epochs have faster response 
times than the a-t-b-t epochs due to the lack of server 
processing times in the blk-seq connections. Conversely, 
Figure 8b shows that for 30% of the request-response 
exchanges, the a-t-b-t model of connection structure 
generates shorter response times than the blk-seq model. 
That is, the presence of endpoint latencies in the a-t-b-t 
model, can, for a subset of connections, result in shorter 
response times for request-response exchanges. This shows 
that subtle interactions between flows that are a function of 
data sizes and latencies can exist and lead to counter 
intuitive results. The existence of these interactions further 
argues for a careful consideration of the appropriate 
connection structure to use when generating TCP 
connections.  
 

7. EFFECT OF CONNECTION STRUCTURE 
ON NETWORK LEVEL PERFORMANCE 
MEASURES  

These subtle interactions between structural elements are 
also apparent when considering the effects of congestion on 
flows. Figures 9a and 9b show the response time of a-b and 
a-t-b-t flows in both a constrained, bandwidth limited 
environment,  and  an  unconstrained  environment.  On the 
one hand, the results for the experiments using the a-b 
connection structure seem obvious: response times degrade 
significantly (become longer) in the constrained 
environment. 
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Figure 9b: Response Time – IBM 
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Figure 10b: Queue length – IBM 

 

The median response time is approximately four times 
greater in the constrained environment than in the 
unconstrained environment. Surely this is the effect of 
congestion induced by the bandwidth constraint. But is the 
bandwidth constraint inherently causing the gross shift in 
response time or is connection structure playing a role? 
Figures 9a and 9b show that in fact connection structure is 
impacting response times more so than any bandwidth 
constraint. Figures 9a and 9b show that while the response 
times of a-t-b-t connections are also negatively affected by 
the bandwidth constraint, the effect is quite modest. Thus if 
one were to perform experiments using the a-b flows, they 
would possibly erroneously conclude that the bandwidth 
constraint would have a very large effect on the original 
UNC or IBM traffic when the reality is that this is not quite 
the case. 
 Of particular note is the fact that in the experiments in 
the constrained environment, request-response exchanges 
for a-t-b-t flows, exchanges that include endpoint latencies, 
have shorter response times than the request-response 
exchanges of the a-b flows (exchanges that do not include 
any endpoint latencies). That is, intuitively we might expect 
that request-response exchanges modeled in a-b flows 
should always have shorter response times than the same 
exchanges in a-t-b-t flows. Figures 9a and 9b show that this  
is not the case. 

 To understand this interaction, it is useful to consider 
the impact of connection structure on network level 
measures of performance such as the lengths of queues at 
routers. For the experiments illustrated in Figures 9a and 
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9b, Figures 10a and 10b show the distribution of the 
number of packets queued at the bottleneck router over 
time. As Figures 10a and 10b show, connection structure 
has a very significant impact on router queue length. In 
particular, Figures 10a and 10b show that a-t-b-t flows 
produce dramatically shorter queues in the bandwidth 
constrained experiments. Even though a-b flows and a-t-b-t 
flows transfer the same number of bytes according to the 
same pattern of request-response exchanges, because a-b 
flows attempt to transmit data “faster” (since the end 
systems in the a-b traffic generation do not pause between 
transmissions as end systems in the measured networks 
did), the a-b flows in a constrained environment actually 
end up transmitting data slower because they induce longer 
queues at the router. For this reason, the response times of 
a-b request response exchanges which have no endpoint 
latencies (other than connection RTTs), take significantly 
longer than a-t-b-t request response exchanges which do 
have them. The endpoint latencies present in the a-t-b-t 
model have  a  significant  smoothing  effect  on  the traffic 
arriving at the bottleneck router, allowing the router queue 
to drain more often. 

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 10  15  20  25  30  35  40  45  50

N
um

be
r 

of
 A

ct
iv

e 
C

on
ne

ct
io

ns

Time in minutes

blk-seq.usernet
blk-conc.usernet

a-b.usernet
a-t-b-t.usernet

 
Figure 11: Active Connections – UNC 

 

 Thus, if one were to perform buffer sizing experiments 
for a given router, the structure of the traffic used to test 
any sizing policy would clearly greatly impact the results. 
A related measure of network performance is the number of 
connections active at any one time (the number of 
connections for which a SYN has been sent but no FIN or 
RST has yet been generated). Number of active 
connections is a measure that influences router buffer 
sizing as well as queuing disciplines that attempt to provide 
differing levels of service to flows.  
 Figure 11 shows a time series of the number of active 
connections for experiments using our four models of 
connection structure. Once again, the structure of 
connections has a dramatic   effect  on  performance.   For   
the  UNC  traffic, experiments using the a-t-b-t model of 
connection structure generate nearly  a  factor of 10 times 
greater number of active connections than experiments 
using the other models. We observed a factor of 14 times 
greater number of active connections for experiments with 
the a-t-b-t model, compared with other models, when using 
IBM traffic. That result is not shown here due to space 
limitations. We note, however, that Figures 10a and 11 

combine to show that while the a-t-b-t experiments result in 
significantly more connections being active at any given 
time, these flows nonetheless generate significantly shorter 
queues in the constrained environment (and according to 
Figure 9a, result in shorter response times).  
 

8. RELATED WORK 
Most of the early work in workload generation focused 

on one or a limited set of application protocols such as 
FTP, Telnet, and SMTP [13], HTTP [4] [5] [10] [11], 
RealAudio [12] and other forms of multimedia [7] [9]. The 
obvious limitation of these approaches is that real links 
carry a continuously evolving mix of hundreds or 
thousands of different “applications” so that modeling each 
application or application class is clearly an approach with 
many difficulties and does not scale well. 

Harpoon was a landmark contribution because it 
addressed the issue of representing a complete set of 
applications using both TCP and UDP transport protocols 
without specific knowledge of application protocols or port 
usage. Swing and Tmix follow this approach but depart 
from the Harpoon approach by using the additional 
information available in a packet header trace to represent 
the internal dynamic structure of connections that reflects 
application-level operations. Swing also includes 
characterizations of the “user” and “session” interarrivals 
which implicitly determine connection start times (Tmix 
uses the measured relative start times of connections). 
Harpoon, Swing and Tmix all generate traffic by read/write 
operations on sockets using real TCP/IP protocol stacks.  

Both Harpoon and Swing use distribution-based models 
parameterized from analysis of empirical data that are then 
used with random sampling methods to generate 
statistically representative workloads in laboratory 
networks. Tmix, however, emphasizes faithful replays in 
the laboratory using derived details about each connection 
to create a replay trace that is used to initiate operations at 
the socket level to generate workloads. In addition to the 
details of request-response exchanges, Tmix can reproduce 
the relative start time, RTT, receiver maximum window 
size, and loss rate for each connection found in the original 
tcpdump from a production link. We chose the Tmix 
generation system [8] for conducting our experiments 
because of its capabilities for implementing all the different 
connection structures and RTT emulations that we use. 
While we chose to use Tmix, we expect similar results 
could be obtained with other tools, especially Swing. 

Recently, there has been increased awareness and 
consensus among networking researchers for the need to 
create a common TCP evaluation suite. In [3], the authors 
create a case for a common evaluation standard for TCP 
evaluations. Their paper does not present results of 
experimentation, but acted as a catalyst for discussions on 
this topic. This led to an ongoing effort by the Transport 
Modeling Research Group (TMRG) in the IRTF to come 
up with a consensus for a baseline standard for TCP 
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evaluation. In [2], the authors describe the requirements for 
a TCP evaluation suite. They propose a benchmark 
consisting of a set of network configurations (that is, 
topologies, routing matrix, etc.), a set of workloads (that is, 
traffic generation rules), and a set of evaluation metrics. 
The benchmark would have two modes: NS simulation 
mode, and hardware experiment mode. The fact that Tmix 
is used in the TMRG TCP evaluation suite also influenced 
our decision to use it for this study. The TMRG effort, 
however, is concerned with defining the benchmark and not 
with research on issues about how details of benchmarks 
may influence the outcomes in experimental network 
research.  

The researchers that developed the Harpoon, Swing, and 
Tmix workload generators reported extensive validations to 
show that the resulting synthetic packet-level traffic on an 
emulated network link was a realistic or faithful 
reproduction of the traffic seen on a real-world network 
link.  To the best of our knowledge, however, ours is the 
first research that explores in detail the effects of using 
different models of application workloads and path 
characteristics on various metrics of network performance.  
 

9. CONCLUSIONS 
 In this paper, we show the results of testbed 
experiments generating TCP traffic from measurement data 
from two very different traffic sources. Using several 
models of TCP application workload structure, we 
demonstrate the strong effects of application and 
connection structure on performance measures such as 
queue length at routers, active connections in the network, 
connection response times, and connection durations. We 
provide empirical data showing that while RTT matters for 
these important performance metrics, the structural 
properties of TCP application workloads generated have an 
even larger impact on performance than do RTTs. These 
results show that detailed measurements of network traffic 
are required if one is to generate credible synthetic versions 
of the measured traffic in experiments.  
 Having demonstrated that “structure matters,” this 
work obviously begs the question of which structure, or 
which paradigm of synthetic traffic generation of 
applications is better than another and which paradigm is 
“best”? This is not a question we address in this work. We 
do not shy away from this important question but rather we 
believe that there is no right answer. In any simulation or 
emulation, one is always faced with this fundamental 
question: how “real” does an experiment have to be in 
order to be realistic? Ultimately this is a question for a 
research community to address through discussion and 
development of best practices and standards. However, 
such a discussion needs to be informed by data. In this 
paper we provide some preliminary data to further the 
discussion of best practices towards developing 
benchmarks for empirical networking research. Without a 
set of benchmarks for traffic workload modeling, we 

cannot realistically compare experimental results from 
different testbeds or research groups, or validate a set of 
published results.  
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