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Abstract 
Networking researchers perform controlled experiments to test new protocols and techniques they 

develop. A critical variable for the network traffic commonly used as input for such experiments, 

known as a trace, is its offered load – how much data is transmitted per unit time. Modifying a 

trace's offered load is a desirable ability for performing controlled experimentation, but performing 

such modification while preserving important unrelated characteristics of the trace is difficult. I 

examine the effects of one technique for achieving this goal, block resampling, and propose 

modifications for adjusting the offered load of a trace while preserving its other fundamental 

characteristics. I show that the existing block resampling technique, despite achieving its original 

design goals, can produce unpredictable result traces and introduces biases into result traces that 

effect important protocol performance measures such as queue lengths and number of active 

connections. I then provide modifications to the basic block resampling algorithm that more 

faithfully preserve these characteristics in the way they were expressed in the original input trace.  

I. Introduction 
Emulation of network traffic in controlled experiments underpins much important research in the 

networking literature and is essential for repeatable, scientific study of network protocol 

performance. Despite this, the network community lacks a comprehensive understanding of how 

different emulation methodologies impact important protocol performance metrics. As Douglas 

Comer, a networking researcher at Purdue and VP of Research at Cisco, recently noted, ―building a 

large packet-switching network is easy; understanding the behavior of traffic in a large packet-

switching network is nearly impossible‖. A result of this complexity is that poorly grounded 

assumptions made during experimental design can and do have drastic effects on experimental 

results.  

The goal of the networking research, of course, is to understand network protocol performance so as 

to improve the performance of networks used outside the laboratory environment, such as the 

Internet. Thus, to ensure that experimental results are relevant for widely-used systems, the 



conditions of an experiment should reflect as closely as possible conditions seen on these real-world 

networks.  

This work represents an effort to better understand one such aspect of experimental design, the 

method by which one introduces variability into an experiment by modification of offered load. The 

ability to modify the offered load of a network trace is a highly desirable weapon in the networking 

researcher’s arsenal. This would allow researchers to examine how the technique they are evaluating 

responds when the volume of traffic on a network increases or decreases. Currently, the question of 

―what happens if volume of traffic increases by 30%?‖ can only be answered approximately with 

simulation techniques: such a tool would permit that question, and others like it, to be answered 

with confidence that the modified trace still exhibited the realistic source-level behavior 

characteristic of the original trace. Unfortunately, the ability to scale Internet traffic in a controlled 

manner implies an understanding of the underlying structure of that traffic, the complexities of 

which is eloquently outlined in [FP01] and encompasses several open research questions.  

I demonstrate that one technique for scaling traffic, referred to here as randomized block-resampling 

and introduced in [HC06], introduces several important differences into the resultant scaled traces it 

creates, dramatically affecting second order performance metrics beyond throughput alone. While 

there are circumstances where such variability is desirable, but there is also a substantial class of 

experiments for which such unpredictable variation is unacceptable. Because this variation’s impact 

on protocol performance is poorly understood, I have sought to modify the basic block-resampling 

technique to produces sets of connection vectors that differ in offered load from the original trace 

from which they derive, yet in other respects demonstrate similar performance characteristics. For 

the sake of this work, I focus on both the throughput, as well as three important performance 

metrics: active connections, queue lengths, and connection durations. Here, throughput is the first-

order metric is directly affected by scaling offered load, with active connections, queue lengths, and 

connection durations being second order effects.  



The remainder of this paper is organized as follows. I will first provide a background on the 

theoretical model used for traffic generation and a description of the block resampling technique. 

Next, I compare a number of scaled traces produced using block resampling to the original trace 

from which they derive. I use this to motivate some modifications to the randomized block 

resampling technique in order to more faithfully preserve second order performance characteristics, 

and provide an evaluation of those modifications. Finally, I will discuss future directions to this 

work, with an emphasis on extensions to the block resampling technique. 

II. Background 
This work is the continuation of a body of work built around the ―a-b-t model‖ of connection 

structure. The a-b-t model defines a simple yet powerful abstraction for describing a network trace at 

the source level, in keeping with [FP01]. While a full description of the a-b-t model is beyond the 

scope of this work, a basic introduction is provided below. For a more in-depth treatment of the 

subject, please see [WAHC+06]. 

In the a-b-t model, a network trace is defined to consist of multiple connection vectors. Each 

connection vector represents a single TCP connection as a sequence of data exchanges between two 

hosts, A and B. Data is exchanged in a series of request-response-thinktime sequences known as 

epochs. ―Thinktime‖ is a period following a data exchange in which not data is transmitted. A single 

connection vector is made up of multiple epochs.  

Using the a-t-b-t model of connection structure and the vocabulary it provides, we can state the 

―Offered Load Scaling‖ problem as follows: 

Offered Load Scaling Problem: Scale the offered load of a network trace while maintaining the source-level 
characteristics of the original trace. 

Input: An anonymized packet header trace with an offered load of L Mbps, represented by a 

set of connection vectors V=v1, v2, …, vn. 

Output: A set of connection vectors V’ = v1’, v2’, …, vn’ representing a packet header trace 

with an offered load of L’. 



One algorithm to solve this problem was presented in [HC06]. This original block-resampling 

algorithm, referred to here as ―Randomized Block Resampling‖ and described in further detail 

below, was intended to not only scale the offered load of a set of connection vectors, but also to 

introduce variability into the connection vectors that it produced. 

The block-resampling technique was proposed and discussed at some length in [HC06]. The 

discussion there, however, focuses on the ability of block resampling to introduce variability into an 

experiment while preserving the so-called long-range dependence of a network trace. The method 

described in that paper, referred to here as Randomized Block Resampling, is never fully specified, so I 

briefly describe its operation and attempt more concretely specify it below. Randomized Block 

Resampling breaks a set of connection vectors into blocks of a time duration known as the window 

size, W. [HC06] describes at length the relationship between block duration and the degree to which 

long-range dependency is preserved in a resultant set of connection vectors, and recommended 

window sizes of between 30 seconds and 5 minutes.  

After creating these blocks, we define a number of bins equal to the desired duration of our output 

trace divided by the block duration. We then populate each of these bins with a block selected 

randomly with replacement. If our desired load is more than twice the load of the original trace, we 

may add more than one block per bin in the same manner. Finally, once all the bins have been 

populated, individual connection vectors are added or removed at random until the total number of 

bytes transferred in the forward direction of the trace divided by the desired duration is equivalent to 

our desired load.  Thus, the constraint block resampling aims to satisfy is: 

Load = Total Bytes / Duration 

Before doing performing block resampling, we a set of connection vectors sorted by the relative start 

time within the trace of each connection, we create a summary file containing the type, start time, 



connection vector ID, and total bytes transferred in each direction for each connection. To more 

precisely describe this process, I present the RandomizedBlockResample algorithm below. 

Given a summarized set of connection vectors V, a start and end time S and E relative to the start 

time of the trace, a block duration W in seconds, a desired duration D, and a target offered load L’: 

RandomizedBlockResample(V, S, E, W, D, L’): 

1. B <- An array of length D/W, each element an array of connection vectors 

2. for every connection vector v in V: 

3. ignore if v.start_time falls outside S,E. 

4. block_index <- int(v.start_time / W) 

5. B[block_index].add(v.id, v.start_time, v.bytes_forward) 

6. resampled_blocks <- An array of length D/W 

7. total_fwd_bytes <- 0 

8. for every block b in resampled_blocks: 

9. for i in range(1, int(L’,L)): 

10. block_index <- uniformly randomly select a block index from B 

11. b <- B[block_index] 

12. for each connection vector v in b:  

13. total_fwd_bytes <- total_fwd_bytes + v.bytes_forward 

14. if total_fwd_bytes > L’ : 

15. while total_fwd_bytes > L’: 

16. cvec <- uniformly randomly select a connection vector from resampled_blocks 

17. cvec_block_index <- index of block containing cvec from resampled_blocks 

18. remove resampled_blocks[cvec_block_index] 

19. total_fwd_bytes <- total_fwd_bytes - cvec. bytes_forward 

20. elseif total_fwd_bytes < L’ : 

21. resampled_blocks2 <- perform second resampling as in lines n-m 

22. while total_fwd_bytes < L’: 

23. cvec <- uniformly randomly select a connection vector from resampled_blocks2 

24. cvec_block_index <- index of block containing cvec from resampled_blocks2 

25. resampled_blocks[cvec_block_index] <- add cvec 

26. total_fwd_bytes <- total_fwd_bytes + cvec. bytes_forward 

27. return resampled_blocks 
 

While resampled_blocks does not contain an actual set of connection vectors with load L’, creation 

of a corresponding set of connection vectors can be achieved trivially and mechanically. Because the 

resampled_blocks array is essentially a re-ordered listing of connection vector IDs, a new set of 

connection vectors can be created simply by iterating through the array, selecting the corresponding 

connection vector from the original set of connection vectors, and saving each of those connection 

vectors to a file.  



III. Methodology 

Experimental Setup 

To understand the behavior of the block-resampling algorithm, I performed a series of experiments 

to evaluate how well a replay of traces produced by block resampling reflected the characteristics of 

a replay of the original network trace. Replays were performed using the Realistic Traffic Generator 

(Tmix) on UNC’s Netlab experimental testbed, which consists of 30 pairs of end systems connected 

by a pair of software routers, simulating a gateway link at a peering point between two ISPs. 

This system was rigorously calibrated to ensure that it did not present any bottlenecks that could 

affect experimental results. Each of the 60 end systems are connected to switches with 1Gbps links, 

and each switch is in turn connected to a router with a 10Gbps link. There is a 1Gbps bottleneck link 

between the two routers. We demonstrated that this system is capable of performing replays at the 

load we use in our experiments without congestion at the routers, and that all of the traffic 

generators are able to produce the load required for these experiments. 

In order to emulate congestion, the link between the routers was artificially capped such that the 

offered load of the emulated trace was 95% of link capacity. This is referred to as ―constrained 

mode‖. Thus, the majority of my experiments were capped at 424Mbps (for an offered load of 

400Mbps), with a couple others capped at 368Mbps (for an offered load of 350Mbps). Experiments 

run without either of these caps in place were only constrained by the 1Gbps bottleneck link; 

because essentially no congestion was seen in this configuration, I refer to this as ―unconstrained 

mode‖. 

Original Packet-Header Trace 

The original set of connection vectors I used in this experiment were derived from an anonymized 

packet header trace taken from a border link on the network of a large Fortune 500 company. This 

trace was captured on October 10, 2006, at 2:20PM. While the trace was originally 1 hour and 14 

minutes long, only the first hour was considered in these experiments. All bytes seen after the one-



hour mark were simply ignored, just as if the original capture had ended at that point. Connections 

in the trace that were initiated or terminated outside the duration of the trace were artificially 

completed so Tmix could replay them.  

The one-hour trace contained 2,785,054 connections. Of these, 2,733,996 connections (98.2%) were 

sequential connections, while 51,058 (1.8%) were concurrent. The mean offered load in direction 1 

was 404.4Mbps, with a standard deviation of 39.3Mbps. The mean offered load in direction 2 was 

366.4Mbps, with a standard deviation of 28.7Mbps. The mean round-trip time (RTT) was 92.3ms, 

with a standard deviation of 143.8ms. The mean number of epochs per connection was 8.8, with a 

standard deviation of 123.4, reflective of a number of very long connections present in this trace. The 

average connection size was 129.3KB, with a standard deviation of 5445.7KB.  

 

Figure 1. Throughput and active connections from a replay of original set of connection 

vectors produced from the packet header trace. Average throughput was 404Mbps. Note the 

non-stationarity in throughput over the length of the trace: the first half of the trace is at a 

consistently higher throughput than the last 25 minutes. 

IV. Unpredictability in Block Resampling 

Variability in Block Resampling Experiments 

The block resampling process is not deterministic. Indeed, uniform random selection of both blocks 

of connections as well as individual connection vectors plays a key role in its operation. While this 

allows RandomizedBlockResample to introduce variability into a derived set of connection vectors, 



it is not known how significantly that variability affects key performance measures. Such knowledge 

is necessary for a large class of experiments, including those that seek to compare a block resampled 

set of connection vectors with a non-block resampled one. 

Thus, my first set of experiments was geared towards understanding what type of variability exists 

within connection vectors produced by the block resampling process. In order to achieve this goal, I 

produced sets of connection vectors corresponding to different permutations of input parameters for 

block resampling, described below. A Tmix replay of the original set of connection vectors derived 

from the Corporate packet header trace was used to represent ground truth for this set of 

experiments, and performance metrics measured from that replay served as a point of comparison 

for the results of my other experiments.  

Despite its non-deterministic nature, we would expect block resampled traces to at least generally 

resemble the real-world trace from which they derive. However, this does not appear to be the case. I 

first constructed three sets of connection vectors with a target load of 400Mbps, a desired duration of 

1hr, and a window size of 30 seconds (as recommended by [HC06]). For each, I accepted the full 

hour’s worth of connections from the original connection vector set. I chose a target load of 

400Mbps in order to enable direct comparison between my derived connection vector sets and my 

original set of connection vectors, which displayed an offered load of 400Mbps. While in theory no 

scaling of the trace should be necessary, RandomizedBlockResample essentially builds a resultant set 

of connection vectors from scratch, creating entirely new sets of connection vectors. 

Even though these three sets of connection vectors had been produced with the exact same input 

parameters, Tmix replays of each produced widely divergent results. Fig. x illustrates the time series 

of active connections and throughput for each replay. 



 

Figure 2. Throughput time series and active connection time series from a replay of the 

original connection vector set (red) and three randomized block resampled connection vector 

sets.  

Block resampled traces showed two important differences from the original replay. First, the 

throughput for the original trace remained relatively constant throughout the duration of the replay, 

hovering near the link limit, whereas in each of the block resampled replays throughput varied 

significantly over the replay, often significantly dipping below the link limit. The second significant 

difference from the original replay was that each of the block resampled replays maintained between 

30,000 – 40,000 fewer active connections at any given time. Moreover, connection starts occurred in 

a distinctly different pattern in the resampled replays than the original replay. More specifically, the 

original replay demonstrated a smooth growth and decline in number of active connections over the 

course of the replay, peaking close to 80,000 active connections after reaching a relatively stable 

plateau after minute 10. The large increase at the beginning of the replay can be attributed to start up 

effects that are artifacts of artificially completing connections that started before the original trace 

was captured. The drop-off at the end is due to a similar effect caused by artificially completing 

connections that finished after the trace began. 

This variation in throughput and active connection patterns led to a different pattern of congestion 

and hence a different pattern of queue activity. The original replay exhibited some degree of 

congestion (i.e., had a non-zero queue length) during 92.2% of the replay. While one of the three 



block resampled replays came close to this level of congestion (non-zero queue length 87% of the 

replay), the median queue length of each of these replays differed substantially, with 2614 packets 

for the original versus 5106 for the block resampled trace. At the same time, the two other block 

resampled replays exhibited far less congestion, with median queue lengths of 136 packets and 0 

packets (this latter replay was in an uncongested state 56% of the replay). 

 

Figure 3. Time series of queue lengths and cumulative distribution of queue length sizes for a 

replay of original (red) and block resampled connection vector sets. 

Beyond a difference in the distribution of router queue lengths, the time series of queue lengths 

during the replay are substantially different. The original trace demonstrated gradually decreasing 

queue lengths across almost the entire duration of the trace, finally reaching a non-congested state in 

the last ten minutes of the replay. None of the other replays, one again, came close to matching this 

behavior. The least-congested trace demonstrated brief spikes in queue lengths followed by long 

periods of no congestion. One trace demonstrated a spike in queue length followed by a gradual 

decline, which at first appears to be generally in line with the original trace. However, this large 

spike in queue length occurred very shortly after the number of active connections in that trace’s 

replay jumped from approximately 29000 to over 46000 in the span of 45 seconds. This 58% increase 

in active connections, and the resulting spike in queue lengths, are do not seem to be reflective of the 



original trace, and such an event would be unexpected to occur in the real world. That is to say, this 

spike in queue length is merely an artifact of the block resampling process.  

Despite this variation in queue length dynamics, several other attributes of the block-resampled 

traces matched that of the original. Given that two traces transmit a roughly equivalent number of 

bytes over a one hour period, yet the block resampled one has 20,000-40,000 fewer active 

connections at any given time, it seems logical that the block-resampled trace would be comprised of 

connection vectors that are either shorter than the original or transmit more data per connection. 

However, this does not appear to be the case, and in fact all block resampled traces seemed to closely 

resemble the original trace in these respects.  

I first considered connection durations. A connection vector’s duration is defined as the total 

amount of time a connection is active, from being opened to being closed. All of the block resampled 

traces closely resembled the original trace’s distribution of connection durations, with median 

connection durations of 643ms, 829ms, and 653ms for each of the block resampled traces compared 

with 789ms in the original trace. This minor variation alone cannot account for the dramatic 

differences in active connection patterns or congestion dynamics. 

 

Figure 4. Cumulative distribution and complementary cumulative distribution of connection 

durations from replays of the original connection vector set (red) and three randomized block 

resampled connection vector sets. 



Connection vector sizes also did not vary significantly between the block resampled traces and the 

original trace. Connection vector size is defined here as the total number of bytes transferred across 

the entire duration of the connection vector; more precisely, this is the sum of all a’s and b’s over 

every epoch in a connection.  

 

Figure 5. Cumulative distribution and complementary cumulative distribution of connection 

vector sizes in original connection vector set (red) and three randomized block resampled 

connection vector sets. 

The distribution of connection vector sizes matches that of the original trace almost exactly for each 

of the three resampled traces. While this does not explain the variation exhibited among the three 

block resampled traces, it does intuitively make sense in the context of the RandomizedBlockResample 

algorithm. Assuming essentially uniform selection of connection vectors during the block resampling 

process, the resulting distribution of connection vectors should be essentially the same as the input 

connection vectors, which these charts demonstrate to be the case. 

Finally, I considered whether connection start times were distributed differently in the resultant 

block resampled traces than the original trace, or if they were not evenly distributed throughout. The 

start time of a connection is defined as the relative time in the set of connection vectors the 

connection vector is to begin transmitting data. Again, the distribution of start times is essentially 

identical among the block resampled and original traces. 



 

Figure 6. Cumulative distribution of connection start times in original connection vector set 

and three randomized block resampled connection vector sets. 

Double block resampling 

Another set of experiments I performed evaluated how the performance characteristics of a given 

trace changed after repeated block resampling. If one assumes that block resampling produces 

realistic traces that remain true to the original trace properties, performing block resampling a trace 

that was itself created by block resampling should produce on that continues to reflect the original 

trace characteristics. This would be true if block resampling were a transitive process. 

To perform this evaluation, I block-resampled the original input trace from its original load of 

404Mbps down to 300Mbps, and then block resampled that resultant 300Mbps again to produce a 

final resultant trace with an offered load of 400Mbps. For each trace, I used the same input 

parameters as my previous set of experiments, namely an input duration of the full one-hour original 

trace and a block duration of 30 seconds.  

Repeated block resampling does not maintain original trace characteristics and in fact produces 

resultant traces bearing little resemblance to the original. This replay had a much higher number of 

active connections than any other block-resampled connection vector set, at times exceeding even 

the original trace to peak at almost 90,000 active connections.  



 

 

Figure 7. Comparison of active connections and queue length behavior for replay of original 

connection vectors (red) a connection vector set (green) that had been scaled down to 

300Mbps, then back up to 400Mbps, using RandomizedBlockResample. The high level of 

congestion produced an erratic and non-representative throughput time series, so it is not 

presented here. Suffice it to say that throughput was at the link limit of 424Mbps for the 

entirety of the replay. 

Congestion was also much more severe in the double-resampled replay, with a median queue length 

of 55,000 packets. Congestion was so great that this replay experienced loss due to full queues on the 

routers. In fact, queue behavior was highly erratic, particularly in the second half of the replay. 

Most striking, and unexpected, was that the distribution of connection durations was significantly 

heavier for the double-resampled replay, with a median of 4048ms compared to the original’s 

median of 789ms. This was likely due to packet loss experienced during the time that the queue had 

filled.  



 

Figure 8. Comparison of connection durations for replay of original connection vectors (red) 

a connection vector set (green) that had been scaled down to 300Mbps, then back up to 

400Mbps, using RandomizedBlockResample. The median connection duration of the latter was 

over 5 times that of the original. 

Clearly, then, performing multiple rounds of block resampling does not produce connection vector 

sets that bear resemblance to the original trace from which they derived. 

V. Self-block resampling: A more faithful block resampling technique 

These variations demonstrated that the block resampling technique, as outlined in [HC06], yields 

highly unpredictable results, even when given the same input parameters and the same input 

network trace. In particular, I observed that congestion and queue length behaviors were not 

preserved between the original input trace and the derived block resampled traces. While it could be 

argued that comparing the congestion dynamics of the resultant traces to the original trace is to use 

something of an arbitrary baseline, this in fact highlights the danger of simply accepting these block 

resampled traces as ―realistic enough‖. We turn to traces directly derived from real-world Internet 

traffic in order to capture traffic characteristics that are difficult or impossible to model; congestion 

dynamics fall into this class of complicated behaviors. The fact that queue length behavior in each of 

the three block resampled traces differs so dramatically from the original, and from each other, 

motivates the need for an approach for modifying offered load while remaining more faithful to the 

original trace’s dynamics. 



One of the design goals of RandomizedBlockResample was the ability to introduce variability into a set 

of experiments. It accomplishes this by synthetically creating a set of new connection vectors by 

randomizing blocks of connections from an original input trace. While this accomplishes the goal of 

introducing variability into a set of connection vectors, as I have shown above the results of this 

transformation are unpredictable and may not be desirable for certain types of experimentation.  

If introducing variability is a non-goal, this randomization step becomes unnecessary, and removing 

it offers the promise of creating resultant traces very similar to the original input trace yet with scaled 

offered loads. This simple modification to the RandomizedBlockResample technique, which I refer to 

as SelfBlockResampling, is in all respects identical to RandomizedBlockResample save for the allocation 

of blocks. Rather than randomly allocating blocks of connections from the original trace to blocks in 

the resultant trace, SelfBlockResample maintains the ordering of connection vector blocks from the 

original trace to the resultant trace. Thus, the first block of the input trace will also be the first block 

of the resultant trace; the second block of the original trace will also be the second block of the 

resultant trace; and so forth. After all sufficient rounds of block allocation have occurred, the trace is 

then scaled up or down to its target offered load by adding or removing connection vectors that have 

been selected uniformly at random from the population of all connection vectors, just as in 

RandomizedBlockResample. Because of their significant similarities, I do not formally present 

SelfBlockResample here; the listing for RBR above provides a sufficient description for this algorithm 

as well. The only difference is the selection of blocks in line 10. 

Evaluating Self-Block Resampling 

The ideal test to evaluate preservation of important performance characteristics by a offered load 

scaling technique would be to compare a block-resampled version of a network trace taken at T1 

with a network trace taken at T2, a point at which throughput on the real world network has 

organically reached the target offered load. Unfortunately, this was not possible with the available 

resources and in the available timeframe for this project. However, I approximated this situation as 



follows. I first randomly removed 10% of the connections from my original set of connection 

vectors, thus creating a ―base‖ set of connection vectors with some reduced offered load. I created 

three ―base‖ connection vector sets in this manner. Next, I created two sets of block resampled 

connection vectors for each base set using each block resampling technique. I scaled the offered load 

in each case to 400Mbps, the offered load of the original connection vector set.  

This procedure created six new sets of connection vectors—two block-resampled connection vector 

sets for each of the three ―base‖ connection vector sets.  I considered the original set of connection 

vectors to be my baseline, analogous to the T2, organic-growth case outlined above. Each of the 

bases cases was analogous to the T1 trace. I performed the same evaluations I had previously 

considered for each of these pairs: throughput, active connections, queue length behavior, and 

connection durations. 

SelfBlockResample produced resultant traces that very closely matched the original input trace in 

regard to both throughput over time and active connections. Connection vector sets produced using 

the self-resampling technique demonstrated a pattern of throughput very similar to the original trace, 

maintaining a congested link until minute 35 of the experiment, and then undergoing a modest 

decline in throughput after that. On the other hand, randomized block resampled connection vector 

sets were again highly variable in the results they produced. In fact, one set displayed an offered load 

of well under 424Mbps (the link capacity), thus causing no congestion over the course of that trace.  

The pattern of active connections seen in the self-resampled replays also closely matched that of the 

original. As before, RandomizedBlockResample replays had far fewer active connections at any given 

time than the original connection vector set and exhibited large bursts of connection starts 

throughout the replay, including a jump of over 15,000 connections in a one minute span. 



 

 

Figure 9. Throughput and active connection comparisons for the ―base‖ set of experiments, 

comparing randomized block resampled traces with self block resampled ones. Top left: 

Throughput time series for original replay (red) and three self block resampled replays.Top 

right: Throughput time series for original replay (red) and three randomized block resampled 

replays. 

As would be expected, this result had an impact on queue length behaviors as well. Each of the self-

block resampled traces exhibited queue length behavior similar to that of the original, with a spike in 

queue lengths toward the beginning of the replay and a gradual decline over the duration, which is 

to be expected given the non-stationarity of the throughput in the original trace. On the other hand, 

randomized block resampled trace again exhibited substantially different queue length behavior from 

the original trace. In the second set of experiments (―base2‖), the randomized block resampled 

replay once again exhibited a spike in connection starts about 12 minutes into the trace that 

correlated with a spike in queue lengths soon after. 



Distribution of queue lengths also provides evidence that self-block resampling better preserves 

queue length behavior from the original trace. In the first two sets of experiments, the distribution of 

queue lengths for the self-resampled replays match the original much more closely. In the third set, 

the randomized-resampled replay matches the original more closely, but the shape of the self-

resampled distribution is essentially that of the original shifted upwards. Indeed, in all cases, the 

shape of the self-resampled distribution closely matches that of the original, indicating that while the 

scale of congestion may not be precisely maintained, the relative levels of congestion are matched quite 

closely. Finally, the resultant traces from self-resampling demonstrate much more predictable queue 

length behaviors compared to the randomized-block resampled ones, which were observed to 

produces queue length distributions both substantially heavier and substantially lighter than that of 

the original. 

 

 



 

Figure 10. Queue length time series and cumulative distribution for each of the three ―base‖ 

set of experiments. Each row corresponds to one ―base‖ connection vector set produced by 

removing uniformly at random 10% of the connection vectors from the original trace. Both 

Self Block Resampling and Randomized Block Resampling were then used to scale these base 

connection vector sets back up to the original offered load of 400Mbps. 

Connection durations did not exhibit any significant variation between resampling techniques. In all 

cases, the distribution of durations matched the original almost exactly, as expected.  

Scaling Traces with Self-Block Resampling 

Thus far I have focused on using block resampling techniques to ―scale‖ network traces by a factor 

of 1, back to their original throughput. As stated before, this enabled the direct comparision of block 

resampled traces to the original trace, which was essential in order to be able to answer the 

fundamental question of how traces produced by block resampling mirror the original trace from 

which they derive. Based on these results, it appears that self-block resampling more faithfully 

preserves both first-order (throughput) and second order (active connections, queue lengths, 

connection durations) performance characteristics from the original trace.  

Of course, the real purpose of any of these techniques is to scale the load of a trace to some new 

target than its current offered load. Because I have been taking a L´ ≈ L, self-block resampling has 

only needed to make minor modifications to the original trace, where the number of connection 

vectors added to or removed from the original connection vector set is much less than the total 



number of connection vectors present. Thus, I compared the results of both RandomizedBlockResample  

and SelfBlockResample when scaling the original connection vector set down to 350Mbps from 

400Mbps (due to limitations of our experimental testbed, I could not scale the load to a significantly 

higher level). As before, I performed block resampling using the standard parameters of accepting 

connection vectors from the full one-hour duration of the original trace and using a block duration of 

30 seconds. I reduced the capacity of the bottleneck link between the routers from 424Mbps to 

368Mbps to ensure that the new 350Mbps connection vector sets were running at 95% of the link 

capacity.  

 

Figure 11. Comparison of replay of original connection vectors (red) with traces rescaled to 

350Mbps using Self-Block Resampling (blue) and Randomized Block Resampling (green). 

Left: Throughput time series. Note the original experiment was constrained at the bottleneck 

link to 424Mbps, while the block resampled experiments were constrained to 368Mbps. Right: 

Active connection time series.  

The self-block resampled connection vector set once again closely resembled the throughput and 

active connection patterns of the original connection vector set. Throughput shifted downward to 

350Mbps, yet still maintained the pattern of non-stationarity exhibited in the original trace, with the 

replay running at the link capacity until the 35th minute and dipping below afterward. In the same 

manner, the active connection plot for the self-block resampled set of connection vectors exhibited 

the same smooth increase and decrease over the duration of the replay. This is in contrast to the 



randomized block resampled replay, which preserved neither the pattern of non-stationarity 

observed in the original trace nor the magnitude of active connections from the original replay. 

The pattern of router queue lengths was once again only preserved in the self-block resampled 

replay. Despite having the same level of congestion as the original replay, the replay of both scaled 

connection vector sets exhibited substantially lower congestion over the duration of the trace. The 

median queue length for the self-block resampled and randomized-block resampled replays were 550 

packets and 563 packets, respectively. The self-resampled replay appears to have captured the shape 

of the original distribution more accurately, but in this case the difference between the two 

resampling techniques is not significant. Connection durations were once again not substantially 

different in any of the cases. 

 

 



Figure 12. Comparison of replay of original connection vectors (red) with traces rescaled to 

350Mbps using Self-Block Resampling (blue) and Randomized Block Resampling (green). 

Top left: Queue length time series. Top right: Cumulative distribution of queue lengths. Bottom: 

Cumulative distribution of connection durations. 

In any case, the connection vector set scaled with SelfBlockResample appears to preserve all of the 

measured performance indicators at least as well as that which was scaled with 

RandomizedBlockResample. Thus, it appears that random reordering blocks of connection vectors is 

responsible for creating the unpredictable experimental results for second-order performance 

indicators seen in the previous section. Indeed, it is likely the case that random addition and removal 

of connections also introduces unpredictable variability into network traces, though at a significantly 

smaller level.  

VI. Future Directions 

While I have demonstrated that block resampling introduces significant unpredictable variability 

into resultant traces, the reason this variation is occurring remains unclear. SelfBlockResample offers a 

potential solution, creating resultant traces that are much more faithful to second-order performance 

metrics that characterize the original trace. Despite this, SelfBlockResample itself still relies upon 

random uniform sampling of connection vectors to actually scale a trace to a new offered load. 

While it preserves the bulk of the structure of the original trace in this process, the randomized 

sampling once again produces unpredictable results: simply adding and removing connections to a 

set of connection vectors disregards any relationship that may be present among those connection 

vectors. Intuitively, we know that connections do not randomly start and end: different application 

workloads generate patterns of connections. Consider, for instance, an email client that connects to a 

server periodically over the course of a day, or a peer-to-peer client that maintains dozens of 

connections over the duration of a file transfer. Each of these applications generates a pattern of 

connections that have a relationship to one another, and randomly adding or removing connections 

from a network trace disrupts this underlying traffic structure.  



At the end of the day, our goal in scaling network traffic is simulating additional users on a network, 

or at least simulating some additional workload. The traffic created by those users or that workload 

will have some structure to it that random sampling does not capture. Thus, it seems that a more 

sophisticated approach to scaling would take this ―session structure‖ into account, rather than 

operating simply on a connection basis. Unfortunately, extracting this information from a raw 

packet trace is a challenging problem, and would in itself likely require substantial effort.  

One area for further exploration using the existing  block resampling techniques would be to take 

into account both the start and end times of connections. Both RandomizedBlockResample and 

SelfBlockResample only consider the start times of connections. Approximately 8% of connections 

persisted for more than 30 seconds, the block duration used throughout this work; 2.5% of 

connections last over 30 minutes! Connections that span multiple blocks are only considered in the 

first block in which they appear. Thus, multiple long-lived connections could be placed in 

subsequent blocks and raise the offered load for some subset of the full trace duration to a value 

substantially higher than the targeted average offered load of the entire trace. This is particularly 

likely when entire blocks of connections are randomized to create a new one, as is done in 

randomized block resampling. 

In fact, this also motivates the need to evaluate the effects of scaling traces at different time scales. 

Because some connections spanned a substantial portion of the entire network trace, a one hour 

trace may be too short of a time scale on which to evaluate the traffic behaviors seen here; the 

connection vectors used here may not reach an effective ―steady state‖, free from start-up effects of 

the experiment or artifacts from artificially completing connections that started before or after the 

original trace was captured. A longer trace might also permit longer block durations to be explored. 

If block duration were long enough to capture the duration of a user session, this could allow for 

rough approximation of a ―session driven‖ offered load scaling technique. 



Finally, some of the differences may be explained by the connection vectors simply not being 

faithfully generated by Tmix. Evaluation of this was out of the scope of this paper but would be vital 

to rule out in future investigation. 

VII. Conclusions 

Scaling offered load remains a highly desirable capability for networking researchers and 

administrators. Unfortunately, existing methods for performing this scaling can produce resultant 

traces that are radically different than their original input trace. The technique I have discussed in 

this work, block resampling, succeeds in scaling offered load of a set of connection vectors, but it 

does not preserve important second-order characteristics of the original network trace from which 

those connection vectors derive. I have further shown that randomized block resampling is a non-

transitive process, and that it is a nondeterministic, even unpredictable, process. 

The SelfBlockResample technique greatly reduces this variation while accurately performing offered 

load scaling. However, this approach still relies upon random sampling of individual connections, 

and does not account for relationships among connection vectors. Moreover, by not performing 

randomization of connection vector blocks while building a resultant trace, SelfBlockResample is 

unable to introduce significant variation into a set of connection vectors. While this makes the 

technique more predictable, it may or may not be a desirable outcome depending on the intentions 

and requirements of the researcher. In general, SelfBlockResample produces output sets of connection 

vectors whose second-order characteristics more closely mirror that of the original trace than those 

produced by RandomizedBlockResample. Finally, I have proposed a series of extensions to the block 

resampling techniques discussed here that may more accurately resolve the problem  

The direct reasons for the variability introduced via randomization remains unclear; this is left as an 

area for future work. However, if nothing else, this work has demonstrated that simply modifying 

the offered load of a network trace can have significant and unforeseen effects upon second-order 

performance metrics. Indeed, the entire concept of ―realism‖ in network traffic generation is poorly 



defined at best, and as a result the findings of this work should not be taken as a repudiation or 

endorsement of one particular technique. Instead, I have sought to more fully describe the non-

obvious, arguably counter-intuitive, effects that scaling the offered load of a network trace can have 

on experiments that make use of such traces. There remains substantial work to be done to more 

fully understand what scaling network traffic means, as well as to understand how to model network 

traffic in such a way that it can be reliably and realistically scaled. Hopefully this work can serve as a 

guide for part of this continuing research. 
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